Best Practices
This topic contains recommendations for hardening your Eucalyptus cloud.
This is the multi-page printable view of this section. Click here to print.
This topic contains recommendations for hardening your Eucalyptus cloud.
This topic describes best practices for Identity and Access Management and the account.
Eucalyptus manages access control through an authentication, authorization, and accounting system. This system manages user identities, enforces access controls over resources, and provides reporting on resource usage as a basis for auditing and managing cloud activities. The user identity organizational model and the scheme of authorizations used to access resources are based on and compatible with the AWS Identity and Access Management (IAM) system, with some Eucalyptus extensions provided that support ease-of-use in a private cloud environment.
For a general introduction to IAM in Eucalyptus, see Access Concepts in the IAM Guide. For information about using IAM quotas to enforce limits on resource usage by users and accounts in Eucalyptus, see the Quotas section in the IAM Guide.
The Amazon Web Services IAM Best Practices are also generally applicable to Eucalyptus.
Protection and careful management of user credentials (passwords, access keys, X.509 certificates, and key pairs) is critical to cloud security. When dealing with credentials, we recommend:
The eucalyptus
account is a super-privileged account in Eucalyptus. It has access to all cloud resources, cloud setup, and management. The users within this account do not obey IAM policies and compromised credentials can result in a complete cloud compromisation that is not easy to contain. We recommend limiting the use of this account and associated users’ credentials as much as possible.
For all unprivileged operations, use regular accounts. If you require super-privileged access (for example, management of resources across accounts and cloud setup administration), we recommend that you use one of the predefined privileged roles.
The Account, Infrastructure, and Resource Administrator roles provide a more secure way to gain super privileges in the cloud. Credentials returned by an assume-role operation are short-lived (unlike regular user credentials). Privileges available to each role are limited in scope and can be revoked easily by modifying the trust or access policy for the role.
This topic describes best practices for machines that host a Eucalyptus component.Eucalyptus recommends restricting physical and network access to all hosts comprising the Eucalyptus cloud, and disabling unused applications and ports on all machines used in your cloud.
After installation, no local access to Eucalyptus component hosts is required for normal cloud operations and all normal cloud operations can be done over remote web service APIs.
The user-facing services (UFS) and object storage gateway (OSG) are the only two components that generally expect remote connections from end users. Each Eucalyptus component can be put behind a firewall following the list of open ports and connectivity requirements described in the Configure the Firewall section.
For more information on securing Red Hat hosts, see the Red Hat Enterprise Linux Security Guide .
Because all instances are based on images, creating a secure image helps to create secure instances. This topic lists best practices that will add additional security during image creation. As a general rule, harden your images similar to how you would harden your physical servers.
euca-authorize
and euca-revoke
.Consider creating one security group that allows external logins and keep the remainder of your instances in a group that does not allow external logins. Review the rules in your security groups regularly, and ensure that you apply the principle of least privilege: only open up permissions as they are required. Use different security groups to deal with instances that have different security requirements.
This topic describes things you can do to secure the Eucalyptus Management Console.
This topic describes which networking mode is the most secure, and describes how to enforce message security.
Eucalyptus components receive and exchange messages using either Query or SOAP interfaces (or both). Messages received over these interfaces are required to have a time stamp (as defined by AWS specification) to prevent message replay attacks. Because Eucalyptus enforces strict policies when checking timestamps in the received messages, for the correct functioning of the cloud infrastructure, it is crucial to have clocks constantly synchronized (for example, with ntpd) on all machines hosting Eucalyptus components. To prevent user commands failures, it is also important to have clocks synchronized on the client machines.
Following the AWS specification, all Query interface requests containing the Timestamp element are rejected as expired after 15 minutes of the timestamp. Requests containing the Expires element expire at the time specified by the element. SOAP interface requests using WS-Security expire as specified by the WS-Security Timestamp element.
Replay detection parameters can be tuned as described in Configure Replay Protection .
Eucalyptus requires that all user requests (SOAP with WS-Security and Query) are signed, and that their content is properly hashed, to ensure integrity and non-repudiation of messages. For stronger security, and to ensure message confidentiality and server authenticity, client tools and applications should always use SSL/TLS protocols with server certification verification enabled for communications with Eucalyptus components.
By default, Eucalyptus components are installed with self-signed certificates. For public Eucalyptus endpoints, certificates signed by a trusted CA provider should be installed.
This topic describes the recommendations for networking modes.A Eucalyptus deployment can be configured in EDGE (AWS EC2 Classic compatible) or VPCMIDO (AWS VPC compatible) networking modes. In both modes, by default, instances are not allowed to send traffic with spoofed IP and/or MAC addresses and receive traffic that are not destined to their own IP and/or MAC addresses. Security groups should be used to control the ingress traffic to instances (EDGE and VPCMIDO modes) and to control the egress traffic from instances (VPCMIDO mode).
VPCMIDO mode offers many security features not present in EDGE mode. Instances of different accounts are deployed in user-defined isolated networks within a Eucalyptus cloud. A combination of security features including VPC, VPC subnets, security groups, source/destination check configuration, route tables, internet gateways, and NAT gateways can be used to selectively enable and configure network access to/from instances or group of instances.
For more information about choosing a networking modes, see Plan Networking Modes .